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A method is presented for the representation of (pictures of) faces. Within a specified framework the representa-

tion is ideal. This results in the characterization of a face, to within an error bound, by a relatively low-dimensional

vector. The method is illustrated in detail by the use of an ensemble of pictures taken for this purpose.

1. INTRODUCTION

The present investigation is concerned with the general
problem of characterizing, identifying, and distinguishing
individual patterns drawn from some well-defined class of

patterns. Both the intuition for and the application of the
methods comes from the particular problem of face identifi-
cation. For this reason we use a terminology particular to

this case, although the generality of approach will be appar-
ent. Also, although a goal could be the investigation of the

human ability to distinguish faces, the treatment given be-
low can only be regarded as a paradigm for such a task. This

is said since we offer no experimental procedure for verifying

or refuting that our method bears in any way on our faculties

for face recognition. However, a small speculation appears

in Section 7.
The treatment presented here is based on a method

known as the Karhunen-Loeve expansion in pattern recog-

nitionl 2 and as factor or principal-component analysis in the
statistical literature.3 The applications of this procedure,
especially in the analysis of signals in the time domain, is

extensive, and no attempt is made to cite these studies. In
brief, we demonstrate that any particular face can be eco-

nomically represented in terms of a best coordinate system
that we term eigenpictures. These are the eigenfunctions of
the averaged covariance of the ensemble of faces. To give

some idea of the data compression gained from this proce-

dure, we first observe that a fairly acceptable picture of a

face can be constructed from the specification of gray levels

at 214 pixel locations. Instead of this, we show, through

actual construction, that roughly 40 numbers giving the ad-
mixture of eigenpictures characterize a face to within 3%

error. Thus, in principle, any collection of faces could be

classified by storing a small collection of numbers for each

face and a small set of standard pictures known as eigenpic-

tures.

2. FORMULATION

An individual face or picture so(x) is a scalar function of

position x = (xl, x2 ). It furnishes the gray level Up of the

picture at each location x. In the case treated here, a picture
will be a full face recorded according to a normalization to be

specified later. Since one theme of this paper is concerned

with data management and reduction it is appropriate to be
specific about the way in which a face is actually captured.

Individual faces were recorded by a frame grabber (see Sec-

tion 5) that stored each picture in digitalized form

(1)

For purposes of exposition, it sometimes is convenient to
regard the matrix of gray scales 'Pij as a vector so, e.g., as the

concatenation of rows of (pgj. In a typical case, the picture

was divided into 128 X 128 picture elements, or pixels, and a

gray scale was determined at each pixel. An alternative and

essentially equivalent way to digitalize a picture is through a
Fourier transform

so(x) 7 ; amn exp [2iri(nx, + mX2)], (2)
<m N

in which case the finite matrix anm is the approximating form
of the continuous picture.

We consider an ensemble of pictures {*(n)}, n = 1, ... . M,

with M assumed to be large enough. v(n) will be used to
denote a particular picture either in its continuous form or in
one of its approximate forms. The average face is denoted

by
ME(n)
n=l

(3)

It seems reasonable to assume that an efficient procedure for
recognizing and storing pictures concentrates on departures
from the mean. With this in mind, the deviation or depar-
ture from the mean

(4)

is defined. We refer to a 0 as a caricature. To make matters
more concrete, Fig. 1 shows the average of the ensemble used

by us, and Fig. 2 shows the comparison between a sample
member of the ensemble and the corresponding caricature.
(Details of the procedures for obtaining these pictures are
given in Section 5.)

3. AN OPTIMAL REPRESENTATION

For the moment, it is convenient to consider each caricature
as a vector +(n) and also to consider the ensemble of vectors
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�0(x) - �Ojj = ('P)ij.

¢0(n) = $5(n) - -
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Fig. 1. Average face based on an ensemble of 115 faces. In this, as
in the other plates, we have refrained from filtering out the high
frequencies produced by the digitization. A pleasanter picture can
be had by the usual trick of squinting or otherwise blurring the
picture.

{95(n)}. In the case actually considered the dimensionality of
the space, (128)2 = 214, is quite large. There is nothing
particularly natural about this coordinate system, nor is
there anything natural about the coordinate system corre-
sponding to the Fourier representation [Eq. (2)].

We can start the development with the premise that only a
relatively small number of dimensions should be necessary
for pictures to be identified. This assertion is rooted first in
the idea that humans are able to store and recognize enor-
mous numbers of faces and, second, since recognition is
instantaneous it is conceivable that we do it by processing
picture information by anything so elaborate as the digital or
Fourier methods just discussed. To place this assertion in
geometrical terms, the view is that the endpoints of the
vectors of the ensemble {0(n)}, as M becomes large, lie in a
relatively low-dimensional space. To use a current idea,
this asserts that the fractal dimension of the space of these
endpoints is small.4 To demonstrate this directly would
require an M that is several orders of magnitude larger than
the nominal 214 and is thus not feasible. (In Section 7 we
indicate a somewhat more reasonable approach to this is-
sue.) We now seek a natural coordinate system for repre-
senting the ensemble. In a sense to be described this will
also be an optimal coordinate system. The treatment given
below parallels the Karhunen-Loeve method1 -3 and is given
in order to make our exposition self-contained.

The members of the ensemble {0(n)} are regarded as having
been suitably normalized (see Section 5). We seek a system
of orthonormal vectors tu(4)),

(n) U(m)) = amn'

under the usual Euclidean inner product that is optimal by
the following criteria: Choose u0') such that

I M
xi = - E~ (UM,) O(n))2

Mn=l
is a maximum, subject to the condition that [u('), u0)] = 1.
(The coefficient of 1/M is inserted for later convenience.)
This forces the unit vector u0') to be central to the ensemble
1q5(n)}. Otherwise said, on average the members of Jowl have
their greatest component in the direction 0). In general,
the kth vector, u(k), is chosen such that

(6)

M
Xk = _ E' (U(k), O(n))2 = ((U(k), 02

n=1
is a maximum, subject to the side conditions

(u(k) u(1)) = 1 l k.

(7)

For an alternative view of the problem just posed, consider
the matrix

I MC = - Jp'g(n)','(m),

n=l
where each term of the sum signifies a dyadic product. The
matrix C is symmetric and nonnegative, and its eigenvalues
and orthonormal eigenvectors are just

(9)

(10)

F a peao top and it crate belowi

Fig. 2. Sample face on top and its caricature below it.

In fact one recognizes conditions (7) and (8) as characteriz-
ing the extremal properties of the eigenvalues of the matrix
C.

(5)

(8)

CU(n) = X(OU(n).
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C, which we may also write as

C= (= 0) (11)

will be recognized as the ensemble average of the two-point
correlation of the caricatures. More exactly, it is the dis-
crete (in space) version of

(12)
M

C(x, y) = (0(x)0(y)) = Mj E (n)(X),p(n)(y),

n=1

the actual two-point spatial correlation function.
Under the limit M t o the symmetric nonnegative kernel

C(x, y) falls into a standard mathematical framework.
Namely, since it is symmetric and square integrable, it fol-
lows from Mercer's theorem 5 that

C(x, Y) = nu (13)

n=1

where fun) are the orthonormal eigenfunctions and {An} the
corresponding eigenvalues. It then also follows that

0(x) = E anu(n)(x) (14)
n=1

in the L2 sense.

4. EIGENPICTURES

As we have seen, the optimal representation of the ensemble.
of caricatures {0(n)} is equivalent to determining the eigen-
vectors of C [Eq. (10)]. Since the matrix C in our specific
calculation is 214 X 214 this problem is beyond the power of
currently envisaged computers. However, if the number in
the ensemble M is less than the dimension of C, then C is
singular and cannot be of order greater than M. (For the
case actually considered by us, M = 115; see Section 5.) The
analysis is simplified and follows from standard methods in
linear algebra. 6

We can proceed with the calculation of a typical eigenvec-
tor u by writing

M

U = ak) 
k=1

(18)J C(x, y)u(y)dy = Xu(x).

This is solved in the same way, viz., by writing

M

u(x) = E anO(n)(X).
n=1

We are again led to Eq. (16) but with

Lmn = I +(m)(x)+'n)(x)dx

(19)

(20)

The dimension of L remains the same, but the entries change
with the degree of graininess.

5. PROCEDURES AND RESULTS

In order to examine the worth of the procedures just de-
scribed, we assembled a file of 115 pictures. Individuals
were drawn mainly from the undergraduate male population
at Brown University. Also, since our initial goal was to
demonstrate feasibility, we endeavored to create a relatively
homogeneous population, viz., smooth-skinned caucasian
males; but see Section 7. Beyond this, no other selection
procedure was used. Passing students were simply asked to
give a moment of their time to have their pictures taken.

(15)

which on substitution into Eq. (10) results in the simpler
problem

Lmnan = Xam, (16)

where

Lmn = (0(m), 0(n)).

is a nonnegative symmetric matrix of dimension M. This
procedure results in the determination of just M of the
eigenvectors of C. The remaining eigenvectors belong to the
null space of this degenerate matrix. It is interesting to
observe that the u that we term eigenpictures are formed by
admixtures of members of the ensemble [Eq. (15)].

Another observation is that in this format the degree of
digitalization of a picture, within limits, plays no role. For
example, in the limit of a continuously formed picture, we
have Eq. (12). Then the eigenfunction problem is

Fig. 3. Cropped faces: upper, the average; middle, a sample face;
and bottom, its caricature.

(17)
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An individual face was video recorded and digitized at 27 X
27 pixels with 28 gray level by means of an IVS-100 image
processor. Faces were lined up by a cross-hair overlay dis-
play that appeared on a video monitor. The vertical line
passed through the symmetry line of the face and the hori-
zontal line through the pupils of the eyes. Field depth was
adjusted so that facial width was the same for images. Since
these steps were all adjusted by eye, this contributed to the
general error level. The pictures were taken under back-
ground-lighting conditions. Since the lighting varied with
the time of day, this too was a source of error. To some
extent, this error was diminished by a normalization proce-
dure that we now describe.

A face, or for that matter any object, can be regarded as a
pointwise map of reflectivities, say, r(x). Under a uniform
illumination, say, I, the face is given by

P( = Ir(x). (21)

For a variety of reasons, it is important to normalize a pic-
ture so that a reference portion of a face is at a standard level
of illumination. If we denote a reference point by x0 and
standard light level by Io, then we take the normalized pic-
ture to be

=() -0
f (xo)

(22)

In actual practice we took the reference portion to be small,
high cheek areas below each eye and averaged the light level
over these two patches. This procedure provides a specific
light-level normalization. In addition, it provides the basis
for the future identification of a picture.

The average face was computed according to Eq. (3) and is

Fig. 4. First eight eigenpictures starting at upper left, moving to the right, and ending at lower right.
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Fig. 5. Approximation to the exact picture (middle panel of Fig. 3) using 10, 20, 30, and 40 eigenpictures.

thus the pixel-by-pixel average of gray levels. The result is
shown in Fig. 1. The caricature as defined by Eq. (4) was
formed for each picture and, as illustrated in Fig. 2, a picture
and its caricature appear virtually the same to us. A possi-
ble explanation is that our own visual apparatus does a
similar subtraction.

For several reasons we mainly considered a cut-down ver-
sion of the problem. Pictures were cropped to include only
the eyes and nose. This is illustrated in Fig. 3, where the
average, a member of the ensemble, and the corresponding
caricature are shown. The correlation matrix was then
formed and all the eigenpictures determined. The first
eight eigenpictures are shown in Fig. 4. For purposes of
illustration these have been slightly doctored. Since the
eigenpictures have negative entries we have added to each a
pedestal or background for purposes of viewing. (Since the
multiplication of an eigenpicture by any constant is still an
eigenpicture, this gives additional variation to their presen-
tation.)

N

° - s + E' anun(n) = 1ON
(P n=l

(25)

is a good fit for various values of N. In Fig. 5 we show the
result of taking the partial terms N = 10, 20, 30, 40. This
should be compared with the exact picture contained in Fig.
3.

A qualitative measure of the goodness of fit is given by

EN= hps _flhIW I (26)

This is plotted (the ordinate is 100 X EN) versus N in Fig. 6
for the typical member of the set shown in Fig. 3. The
dashed curve in this figure depicts the average error over a
set of 10 members of the ensemble chosen at random.

From the form of eigenvalue Xn, [Eq. (7)] it follows that /X5
measures the degree to which the population {+(n)} falls along
the nth direction. It is conceptually convenient to put this
in the form of a probability

6. EIGENPICTURE CONSTRUCTION

We recall that each eigenpicture, according to Eq. (15), is an
admixture of members of the ensemble. In addition, these
eigenpictures, according to the criteria of Section 4, are the
optimal set by which to represent a picture. To examine
this assertion, we consider the fit of a typical picture by
eigenpictures. For any member of the population we can
write

M

So = - + E anU (n)

n=1

M

CD

I-zw
0-

(23)

where

an = (U X P). (24)

We next consider how good a partial fit is, viz., to what
degree

OL
20 40 60 80 100

TERMS

Fig. 6. Percent error versus number of eigenpictures used in the
approximation. Solid curve is for picture shown in Fig. 2 (see also
Fig. 5). Dashed curve is average over 10 different sample faces.
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in the other. Since the ensemble was made up only of males,
this strengthens confidence in the method presented and
incidentally shows that the cropped features are, relatively
speaking, gender independent (as long as makeup is not
applied).

We turn next to the question of resolving a full face in
terms of the corresponding eigenpicture development. It
should be apparent that the number of eigenpictures needed
to fit a picture, to within some error bound, increases as the
number of features increases. This is illustrated in Fig. 8,
which contrasts the error curve of the cropped face with the
analogous curve that we calculated for the full face, as de-
picted in Figs. 1 and 2. We have also considered an interme-
diate version in which the hair and background are removed

20 40 60 80 loo from a picture. As might be expected, this curve falls be-
INDEX tween those shown in Fig. 8.

ty projection along the eigenpicture directions; see Although we have refrained from imagining by what
means we, as humans, process information of this sort, one
suggestion can be made. If a face is compartmentalized,
even beyond the cropping used by us (say, eyes, nose,
mouth), then each can be fitted by relatively few eigenpic-
tures. That is, if a face is identified by its parts, then an
economical scheme results. (Family members are often de-
scribed as having another's eyes, mouth, etc., which would
seem to support this idea.)

A seemingly different, but actually related, idea pertains
to the dimension of the manifold of all faces, a notion already
mentioned in Section 3. As mentioned there, a space of 214
dimensions, in which one supplies gray levels at each of the
corresponding pixels, is sufficient to construct an adequate
likeness. On the basis of our construction, we can greatly

-_ _ reduce this estimate. In fact, the procedure presented here
.I I I I suggests that fewer than 100 eigenpictures are necessary to

20 40 60 80 100 fit a picture. Correspondingly, fewer than 100 dimensions
TERMS

rror versus number of eigenpictures for the full are needed to provide a likeness. Our method can be regard-
lg. 2. The dashed curve is the corresponding ed as giving an estimate on the upper bound of the number of
isthe same as in Fig. 6. dimensions of the (fractal) set in which the space of all

pictures fits. Further, if the coordinate system based on the
eigenpictures is now used in an actual calculation of the

P = V n .7(27) dimension of this set, far fewer pictures would be required.
E, +/5;;This calculation, in addition to being of general interest,
k might even give a clue to how we humans do the job. Unfor-

1 Fig. 7, and, as the curve shows, the popula- tunately, we do not have a sufficiently large ensemble of
Jmingly along the principal eigenvectors. faces at present for this purpose.

7. DISCUSSION

Thus far we have focused our attention on the ensemble of
cropped pictures, as illustrated in Fig. 3, and, in addition,
restricted our calculations to members of the ensemble. It is
of interest to discuss what occurs when we depart from both
of these restrictions.

To discuss the second point first, we took pictures of three
randomly selected people not from the population and ap-
plied our fitting procedure to their cropped faces. In one
case lighting conditions were deliberately chosen to be poor
and quite different from those used in gathering the ensem-
ble. Since the error was down to 7.8% after 40 terms, we
regarded this as a success. It also lends further justification
to the normalization condition (22) discussed earlier. The
other two nonensemble faces were of females, and at N = 40
the error was down to 3.9% in one instance and down to 2.4%
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